Analysis of Precipitates: AlN, M\textsubscript{23}C\textsubscript{6}

Hot rolled strip of Fe–16Cr–0.5Mn–0.1Ni–0.1Al–0.07C–0.03N (mass-%) ferritic stainless steel

AlN: $P6_3mc$, $a=0.311$ nm, $c=0.498$ nm

M\textsubscript{23}C\textsubscript{6}: $Fm\bar{3}m$, $a=1.05$ nm

Analysis of Precipitates: Twinned $M_{23}C_6$

Twinned $M_{23}C_6$ precipitates in a 16%Cr ferritic stainless steel

Analysis of Precipitates: AlN, M$_{23}$C$_6$

STEM images and EDS analysis of AlN and M$_{23}$C$_6$ precipitates in a hot rolled strip of Fe–16Cr–0.5Mn–0.1Ni–0.1Al–0.07C–0.03N (mass-%) ferritic stainless steel

Analysis of Precipitates: M_2N

M_2N precipitates in a 16%Cr ferritic stainless steel

M_2N: $P6_3/mmc$, $a=0.274$ nm, $c=0.444$ nm

Orientation Relationship

$\langle 110 \rangle_{bcc} // \langle 001 \rangle_{hcp}$

$\langle 111 \rangle_{bcc} // \langle 110 \rangle_{hcp}$

Analysis of Precipitates: M_2N

Elongated M_2N precipitates in a 16%Cr ferritic stainless steel

Orientation Relationship

$$(110)_{\text{bcc}} // (001)_{\text{hcp}}$$

$$<111>_{\text{bcc}} // <110>_{\text{hcp}}$$

BF, SAD

Faulted M_7C_3 carbides in an Fe–17Cr–6Mn–3Ni–4Al–0.45C duplex stainless steel

Analysis of Precipitates: M_7C_3

Space group: pnma
a=4.512, b=6.891, c=12.119 Å

Hexagonal
a=6.969, c=4.463 Å

Analysis of Precipitates: M_3C

Orthorhombic M_3C (θ):
- $a = 0.509$ nm
- $b = 0.674$ nm
- $c = 0.452$ nm

SAD pattern of martensite and two cementite (θ) variants

Z.A.: [0-11]$_{\alpha}$/[001]$_{\theta}$/[001]$_{\theta}$

-200α
-240α
240α
200α
-200α
200α
020α
220α
011α
-220α
-220α

Bagaryatski O.R.:
- {112}$_{\alpha}$/ {010}$_{\theta}$
- <01-1>$_{\alpha}$/ <001>$_{\theta}$

Dark field imaging of a tempered Fe–13Cr–0.3C martensitic stainless steel using two different cementite reflections

BF, DF, SAD

Analysis of Precipitates: B2

Fe–17Cr–6Mn–9Ni–7Al–0.46C ferritic stainless steel

B2-(Ni,Fe)Al intermetallics exhibiting a cube-on-cube O.R. with the ferritic matrix

Analysis of Precipitates: VN

VN precipitates in an Fe–15Cr–6Mn–3Ni–0.65V–0.5Si–0.11C–0.24N austenitic stainless steel

Recrystallization / Precipitation

TEM montage of **ferrite and Cr carbides and nitrides** in an Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N ferritic stainless steel

Annealing time: 30 s + 30 s

Recrystallization / Precipitation

TEM montage of **ferrite and Cr carbides and nitrides** in an Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N ferritic stainless steel

Annealing time: 30 min

Recrystallization of Martensite and Ferrite

Difference in the recrystallization behavior of ferrite and martensite in a cold-rolled Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N ferritic-martensitic stainless steel

Annealing conditions: rapid heating to 750 °C and immediate cooling

BF, DF

Recrystallization of Martensite

Bulging Recrystallization of α'
Due to the high density of lath boundary precipitates, bulging of recrystallized regions into recovered martensite preferentially occurs in the longitudinal directions of laths.

Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N dual-phase stainless steel

Rex. annealing conditions:
15 s 830 °C

Recrystallization of Martensite

Bulging Recrystallization of α'
Due to the high density of lath boundary precipitates, bulging of recrystallized regions into recovered martensite preferentially occurs in the longitudinal directions of laths.

Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N dual-phase stainless steel

Rex. annealing conditions:
15 s 830 °C

Stacking Faults

Stabilization of austenite in an Fe–16Cr–0.4Mn–0.1Ni–0.04C–0.04N transformable stainless steel obtained by Q&P processing

J. Mola, B.C. De Cooman, Quenching and partitioning processing of transformable ferritic stainless steels, Scr. Mater. 65 (2011) 834–837.
Deformation-Induced Martensite

α'-martensite formation at intersections of ε-martensite plates in Fe–14.3Cr–5.5Mn–5.5Ni–0.5Si–0.37N–0.02C austenitic stainless steel

Deformation-Induced Martensite

Strain-induced $\gamma \rightarrow \epsilon \rightarrow \alpha'$ transformation route in an Fe–7Mn–0.1C medium Mn steel

Spontaneous Martensite

Fe-15Cr-1Mo-0.3C-0.4N stainless steel after partial transformation to spontaneous (athermal) α'-martensite

Spontaneous Martensite
Fe-15Cr-1Mo-0.3C-0.4N steel after partial transformation to spontaneous (athermal) α′-martensite

Analysis of Precipitates: B2 and σ-Phase

Ferrite + B2-NiAl

σ-phase: tetragonal P4_2/mnm, a=0.880 nm, c=0.4544 nm

SAED, encircled area

BF

DF using the marked B2/σ common spot

Fe–17Cr–6Mn–3Ni–4Al–0.45C duplex stainless steel

BF, DF, SAD

201_α Z.A. // 201_B2 Z.A. // 23-6_σ Z.A.