On the hardness of high carbon ferrous martensite

J Mola* and M Ren
Institute of Iron and Steel Technology, Technische Universität Bergakademie Freiberg,
Leipziger St. 34, 09599 Freiberg, Germany
*Corresponding author: mola@iest.tu-freiberg.de

Abstract. Due to the presence of retained austenite in martensitic steels, especially steels with high carbon concentrations, it is difficult to estimate the hardness of martensite independent of the hardness of the coexisting austenite. In the present work, the hardness of ferrous martensite with carbon concentrations in the range 0.23–1.46 mass-% was estimated by the regression analysis of hardness for hardened martensitic-austenitic steels containing various martensite fractions. For a given carbon concentration, the hardness of martensitic-austenitic steels was found to increase exponentially with an increase in the fraction of the martensitic constituent. The hardness of the martensitic constituent was subsequently estimated by the exponential extrapolation of the hardness of phase mixtures to 100 vol.% martensite. For martensite containing 1.46 mass-% carbon, the hardness was estimated to be 1791 HV. This estimate of martensite hardness is significantly higher than the experimental hardness of 822 HV for a phase mixture of 68 vol.% martensite and 32 vol.% austenite. The hardness obtained by exponential extrapolation is also much higher than the hardness of 1104 HV based on the rule of mixtures. The underestimated hardness of high carbon martensite in the presence of austenite is due to the non-linear dependence of hardness on the martensite fraction. The latter is also a common observation in composite materials with a soft matrix and hard reinforcing particles.

1. Introduction
The high strength and toughness of martensitic steels make them suitable candidates for a variety of structural and engineering applications [1]. The higher strength of martensite compared to other constituents such as ferrite, austenite, pearlite, and bainite is the reason behind the increasing use of martensite-containing steels. For instance, low carbon dual-phase and hot stamping steels with partially and almost fully martensitic microstructures, respectively, are being increasingly used for structural automobile parts [2,3]. Medium and high carbon martensitic steels, on the other hand, are commonly used in engineering applications such as gears, shafts, and bearings [4,5].

The strengthening effect of carbon arises from factors such as dislocation hardening [6,7], grain boundary hardening as described by the Hall-Petch relation [8], and interstitial strengthening [9]. The dependence of hardness on the carbon concentration has been established in numerous investigations [4,10–12]. For low carbon steels, hardness values reported in various investigations are largely consistent and indicate significant strengthening of martensite by an increase in the solute carbon concentration [12]. The rate of increase in the hardness of martensite decreases as the carbon concentration increases [4,12]. The hardness may even decrease as the carbon content exceeds 0.8–1 mass-% [13]. The latter observation may be justified by the presence of large quantities of austenite in the microstructure of as-quenched high carbon steels. Therefore, the hardness of martensite in high carbon steels cannot be estimated unless the softening effect of retained austenite is properly excluded.
By adjusting martensitic-austenitic microstructures containing various retained austenite contents, the present work enables to determine the dependence of hardness on the fraction of martensite. Establishing an appropriate fitting and extrapolation scheme in turn enables to obtain a realistic estimation of the hardness of martensite, especially in the case of high carbon martensitic steels where the coexistence of high austenite fractions with the martensite is inevitable.

2. Experimental procedure

Ingots with an approximate weight of 300 g and chemical compositions as given in Table 1 were prepared in a cold-crucible induction melting facility. Specimens with approximate thicknesses of 4.5-5 mm were austenitized at 1150 °C for 5 min and subsequently quenched to room temperature (RT) using brine (10 NaCl in water). Subsequently, various martensite fractions were adjusted by resumed cooling to temperatures as low as -196 °C, approximately 3 sec after brine quenching. To ensure the absence of decarburization and oxidation in hardened specimens, an outermost layer of specimens with an approximate thickness of 0.8 mm was removed by mechanical grinding. Bulk martensite fractions were then quantified by magnetic measurements at room temperature using a Metis MSAT device equipped with a Lakeshore 480 fluxmeter. For pure iron, the equipment returns a mass magnetization of 213.5 emu/g. Given that the mass magnetization of iron decreases by 1.18 emu/g per mass-% solute Mn [14], the expected magnetization of specimens in the fully martensitic condition (σα') was calculated using the following equation:

\[\sigma_{\alpha'} \text{ (emu/g)} = 213.5 - (1.18 \times C_{\text{Mn}}) \]

Martensite fractions of ternary Fe–Mn–C steels were quantified by dividing measured magnetizations by the magnetization based on equation (1). To obtain hardness values representative of all phases, Vickers hardness measurements with a load of 98 N (HV10) were done using a Wolpert 430-SVD indenter. To estimate the hardness of austenite in the steel 1.4C, a small load of only 49 mN (HV0.005) was applied using a Shimadzu HMV-2000 indenter. To obtain reliable average hardness values, five indentations were performed per specimen. To minimize the occurrence of aging/tempering reactions prior to hardness measurements, the specimens were mounted using cold resin. Mechanical grinding was done using SiC papers with grit sizes between 220 and 2000. Subsequently, specimens were polished using diamond suspensions with particle sizes of 3 μm and 1 μm for a total duration of 20 min. Final polishing for 2 min was done using a suspension of colloidal silica with a particle size of 0.04 μm. The deformation-induced transformation of austenite during the polishing steps was minimized by grinding under the flow of water at 80 °C. Light optical microscopy examinations using unpolarised light were done using a Neophot 30 microscope.

Table 1. Chemical composition of ternary steels in mass-%.

<table>
<thead>
<tr>
<th>Steel ID</th>
<th>Mn</th>
<th>C</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2C</td>
<td>1.49</td>
<td>0.23</td>
<td>bal.</td>
</tr>
<tr>
<td>0.6C</td>
<td>1.49</td>
<td>0.64</td>
<td>bal.</td>
</tr>
<tr>
<td>1.0C</td>
<td>1.33</td>
<td>1.04</td>
<td>bal.</td>
</tr>
<tr>
<td>1.4C</td>
<td>1.48</td>
<td>1.46</td>
<td>bal.</td>
</tr>
</tbody>
</table>

3. Results and discussion

Table 2 summarizes the martensite contents associated with various quench temperatures. The choice of low quench temperatures aimed to eliminate austenitic regions with a low stability at RT by inducing their thermal transformation to martensite. In general, the highest quench temperature was raised as the carbon concentration increased. This reduced the likelihood of deformation-induced
martensite formation during the surface grinding and polishing steps. For the 1.4C steel, RT was used as the highest quench temperature. Figure 1 shows light optical micrographs for the 1.4C steel quenched to three different temperatures, indicating the increase in the fraction of martensite at lower quench temperatures. To obtain at least two different martensite contents in each steel, quenching to RT was also done for the 0.2C steel. The fraction of retained austenite after cooling to RT was only 3.5 vol.%. The retained austenite was therefore present as film-like regions between martensitic laths. This retained austenite morphology is associated with a much higher mechanical stability compared to the blocky retained austenite present in steels with higher retained austenite contents [15]. Therefore, quenching to RT was also done for the 0.2C steel.

Table 2. Martensite fractions after quenching to indicated temperatures

<table>
<thead>
<tr>
<th>Steel ID</th>
<th>Martensite fractions after quenching, vol.%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 °C</td>
</tr>
<tr>
<td>0.2C</td>
<td>96.5</td>
</tr>
<tr>
<td>0.6C</td>
<td>-</td>
</tr>
<tr>
<td>1.0C</td>
<td>-</td>
</tr>
<tr>
<td>1.4C</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Due to the presence of untransformed austenite in the microstructure of all steels even the 0.2C steel with the lowest carbon content, the true hardness of martensite cannot be determined independently of the hardness of austenite. A possible way of excluding the effect of austenite is to extrapolate hardness values for the specimens with various martensite contents. In figure 2, hardness values are plotted as a function of the martensite fraction. The hardness values were measured using an applied load of 98 N (10 kgf). Under this load, the mean diagonal length of indentations would be at least 136 µm for hardness values up to 1000 HV. Therefore, the indentations are large enough to ensure the contribution of both phases to the measured values. Linear extrapolation has been previously used to estimate the hardness of fresh and tempered martensites in the microstructure of a quenched and partitioned Fe–13Cr–0.3C stainless steel [17]. When martensite fractions are varied in a narrow range close to 100 vol.%, different extrapolation schemes lead to similar hardness approximations for martensite. Nevertheless, linear extrapolation of hardness to 0 vol.% martensite might lead to negative hardness values for austenite [17], indicating the inappropriateness of linear extrapolation. In the present case too, linear fitting to experimental hardness values for 0.2C, 0.6C, and 1.0C steels would lead to negative hardness values for austenite. To overcome this obvious drawback of linear fitting, a non-linear fit was made to the experimental data. Hardness values for the 1.4C steel with the broadest variation of martensite fraction indicate the appropriateness of an exponential fit to the data.

Figure 1. Microstructure of the 1.4C steel after quenching to the marked temperatures. Nital was used as etchant. Martensite and austenite appear bright and dark, respectively.
To enhance the regression analysis, the hardness of austenite in the experimental steels was approximated using the following procedure (figure 2, open symbols at 0 % martensite). By indenting a large austenitic region with a small load of 49 mN (5 gf), the hardness of austenite in a specimen of 1.4C steel containing a low martensite fraction was determined to be 211 HV. The hardness of austenite in steels containing lower carbon concentrations was assumed to decrease linearly to that for an SUS316L austenitic stainless steel (140 HV) [18] which was assumed to also represent the hardness of interstitial-free austenite in the present steel. The effect of carbon concentration on the hardness of austenite in the experimental steels (HV\text{γ}) was subsequently expressed using the following equation:

$$\text{HV}_{\gamma} = 140 + (48.6 \times \text{mass-\% C})$$ \hfill (2)

The extrapolated hardness of martensite based on exponential fits to the hardness values is marked in figure 2 and summarized using the data denoted HV\text{exponential} in figure 3. The results reveal that the hardness of martensite is close to 1014 HV for the 0.6C steel and increases to 1271 HV and 1791 HV for the 1.0C and 1.4C steels, respectively. These hardness levels are significantly higher than the measured hardness values for the specimens quenched to -196 °C (HV\text{measured} in figure 3). The hardness values denoted HV\text{RoM} in figure 3 represent the hardness of martensite if the softening effect of austenite is excluded by applying the rule of mixtures to the hardness values for the specimens quenched to -196 °C (HV\text{measured}). This was done by means of the following equation:

$$\text{HV}_{\alpha}^{\text{RoM}} = \frac{\text{HV}_{\alpha}^{\text{measured}} - (f_{\gamma} \times \text{HV}_{\gamma})}{1-f_{\gamma}}$$ \hfill (3)

where f\text{γ} denotes austenite fractions after quenching to -196 °C. The dependence of f\text{γ} on the carbon concentration is also represented in figure 3. The HV\text{γ} values were estimated from equation (2). As shown in figure 3, HV\text{exponential} values are well above the HV\text{RoM} values as well as the literature results in which the effect of austenite has been excluded by the rule of mixtures [13]. Consideration of the hardness values for metal-matrix composites with various fractions of hard reinforcing particles confirms the non-linearity of the relationship between the hardness and the second phase volume fraction [19–21]. In other words, plastic deformation due to indentation is mainly accommodated by
the soft matrix phase. In such cases, the measured hardness values remain below the straight line drawn between the hardness values for the soft and hard constituents.

![Figure 3](image)

Figure 3. Austenite fraction (f_γ) and hardness of steels with various carbon contents after quenching to -196 °C ($HV_{\alpha+\gamma}^{\text{measured}}$). The extrapolated hardness of martensite based on exponential fits to the hardness values in the presence of various martensite fractions is marked $HV_{\alpha}^{\text{exponential}}$. The hardness of martensite estimated based on the rule of mixtures is marked HV_{α}^{RoM}.

Nano-indentation measurement have indicated that the hardness is almost equal for hardened steels containing 0.6 mass-% and 0.8 mass-% carbon [22]. Invalid assumptions on the material response, excessive surface roughness, and insufficient penetration depths are among common sources of error in nano-indentation experiments [23,24]. Although increasing the penetration depth during the nano-indentation of hardened steels with martensitic-austenitic microstructures leads to an enhanced reliability of derived hardness values, it increases the contribution of retained austenite to the estimated hardness values for martensite. The difficulty of excluding the effect of austenite without compromising the reliability of nano-indentation measurements emphasizes the usefulness of regression analysis for the estimation of the true hardness of martensite.

4. Conclusions

In summary, the dependence of hardness on the martensite fraction of hardened martensitic-austenitic steels with various phase balances was described using exponential fits to the hardness data. The hardness of martensite containing 1.46 mass-% carbon was estimated to be 1791 HV which is significantly higher than the measured hardness of 822 HV for the same steel containing nearly 68 vol.% martensite and the hardness of 1104 HV obtained after excluding the effect of austenite by the rule of mixtures.

Acknowledgements

Support of the technical staff at the Institute of Iron and Steel Technology of TU Bergakademie Freiberg is gratefully acknowledged.

References
